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Reinforcement Learning (RL)[1]

Return:     Policy:  

2

[1] Reinforcement Learning: An Introduction, Sutton and Barto, 2018

Agent Environment
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Successes

3

[1] TD-Gammon, a self-teaching backgammon program, achieves master-level play; Tesauro, G.; Neural Computation 1994
[2] Mastering the game of go without human knowledge; Silver et al.; Nature 2017
[3] Human-level control through deep reinforcement learning; Mnih et al.; Nature 2015
[4] Outracing champion Gran Turismo drivers with deep reinforcement learning; Wurman et al.; Nature 2022
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Challenges
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[1] Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection; Levine et al.; ArXiv 2016
[2] Reward (Mis)design for Autonomous Driving; Knox et al.; ArXiv 2021

Google’s Robot Farm[1] Autonomous Driving[2]
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Why is RL Difficult?
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Agent Data 
Distribution

Agent
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Estimate and Control the Data Distribution

6

Agent Data 
Distribution

Agent
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The Thesis Question

How can methods for estimating and controlling an agent's visitation 
distribution be beneficially incorporated into RL algorithms?
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Distribution Matching for RL

How can methods for estimating and controlling an agent's visitation 
distribution be beneficially incorporated into RL algorithms?
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Transitions StatesPolicy
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Definitions
Policy

State visitation distribution

Transition visitation distribution
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Overview
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Transitions StatesPolicy

1. Overcoming policy sampling 
error

2. Simulator grounding as 
imitation from observations 
(IfO)

3. An algorithm for 
sim-to-real transfer

4. Time-step metric for 
estimating Wasserstein 
distance in MDPs

5. Learning a goal conditioned 
policy by minimizing W1 
distance

6. Multi-agent coordination 
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Overview - Completed Before Proposal
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Overview - After Proposal
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Distribution Estimation and Control for RL

14

Transitions

States
● Adversarial Intrinsic Motivation for Reinforcement Learning;

Durugkar, I., Tec, M., Niekum S., Stone, P.;  NeurIPS 2021
● DM2: Distributed Multi-Agent Reinforcement Learning by Distribution 

Matching;
*Wang, C., *Durugkar, I., *Liebman, E., Stone, P.; AAAI 2023

● An Imitation from Observation Approach to Transfer Learning with 
Dynamics Mismatch;
*Desai, S., *Durugkar, I., *Karnan, H., Warnell, G., Hanna, J. and Stone, P; 
NeurIPS 2020

Actions
● Reducing Sampling Error in Batch Temporal Difference Learning;

Pavse, B., Durugkar, I., Hanna, J., Stone, P.; ICML 2021

* - joint first authors
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Policy Sampling Error Corrected (PSEC) - TD Learning

● Batch temporal difference (TD) learning will have some sampling error

● Contribution[1]: Estimating the maximum likelihood policy implied by the 

dataset allows me to eliminate sampling error

● Analysis shows that PSEC-TD(0) converges to a fixed point with no policy 

sampling error

16
[1] Reducing sampling error in batch temporal difference learning; Pavse, B., Durugkar, I., Hanna, J. and Stone, P.; ICML 2020
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Results - Grid World
● 4 x 4 grid world, deterministic transitions

● Tabular representation

● equiprobable policy being evaluated

● PSEC-TD uses correction on TD error

17
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Potential Future Work - Mixed Batches

● How to deal with batches made up of data from different policies?
● Behavior policy estimation stays the same

18

● What evaluation policy to use?

where the batch was obtained by executing K policies

and policy i is executed with likelihood 
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Experiment
● 4x4 grid world
● Two policies, data collected from 

them equally
● Size of bubbles shows relative 

likelihood of visitation under 
corresponding policy

19
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Results - Mixed Batches
● Two policies with data 50% 

from each policy
● Evaluation policy calculated 

with DP
● Takes more episodes to 

eliminate policy sampling 
error

20
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Policy Sampling Error – Summary

● Estimating the empirical distribution of the policy can help eliminate 
sampling error

● Analysis shows that PSEC-TD(0) converges to a more desirable fixed point 
compared to TD(0)

● Experiments show that PSEC-TD(0) eliminates sampling error

● Introduce a potential avenue for future work

21
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Overview
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Simulator Grounding and GARAT [1]

● Transfer with dynamics mismatch seen through the transition 
distributions induced

● Contribution 1: Show that simulator grounding via grounded action 
transformation (GAT)[2] is equivalent to imitation from observations (IfO) 
where the expert is the target environment (real world)

● Contribution 2: Derive an adversarial distribution matching algorithm, 
generative adversarial reinforced action transformation (GARAT), to train 
the action transformation function

23

[1] An Imitation from Observation Approach to Transfer Learning with Dynamics Mismatch; *Desai, S., *Durugkar, I., *Karnan, H., Warnell, G., Hanna, J. 
and Stone, P; NeurIPS 2020
* - joint first authors
[2] Grounded action transformation; Hanna et al.; AAAI 2017
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Results - Evaluating Transfer
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[1] Sim-to-Real: Learning Agile Locomotion For Quadruped Robots,
     Tan et al., RSS 2018

● Transfer between two simulators for Minitaur[1]

● Baselines trained for 1 million time-steps

● Results scaled to set performance of 𝜋sim to 0 
and 𝜋real to 1

ANE - Noise and the reality gap: The use of simulation in evolutionary 
robotics, Morán et al., Advances in Artificial Life, 1995
RARL - Robust adversarial reinforcement learning, Pinto et al., ICML 
2017

Minitaur domain
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Minimize distribution mismatch for Goal-conditioned RL

● Goal-conditioned RL[1]: Agent needs to 
reach a goal given to it at the 
beginning of its episode.

● Blue circle - start state
● Red circle - goal state

26
[1] Learning to achieve goals; Kaelbling; IJCAI 1993

● Target distribution can be specified as 
Dirac distribution at the goal

● Agent needs to minimize mismatch of 
its state visitation distribution to 
this target distribution.
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Minimize distribution mismatch in Goal-conditioned 
RL[1]

● Contribution 1: Study use of Wasserstein distance to minimize state 
visitation distribution mismatch. Propose use of time-step metric as 
ground metric for Wasserstein distance

● Contribution 2: Propose an adversarial procedure, adversarial intrinsic 
motivation (AIM) to learn a reward function which results in a policy that 
minimizes Wasserstein distance to a goal.

27
[1] Adversarial intrinsic motivation for reinforcement learning; Durugkar, I., Tec, M., Niekum S., and Stone, P.; NeurIPS 2021
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Wasserstein Distance

● Distance between distributions (say 𝜇 and 𝜈)

28

x yd(x, y)
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Wasserstein Distance using Kantorovich Duality

● If estimating Wasserstein-1 distance, the dual form can be used

29

f(X)
● The potential function f needs to be 1-Lipschitz w.r.t. metric d 
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Why the Ground Metric Matters

30

Manhattan distance Dynamics-based distance Start
Goal
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Wasserstein Distance using Kantorovich Duality

● In most previous work, d is assumed to be L2 distance between features.

● I propose the use of the time-step metric for d in MDPs

● Lipschitz continuity can be enforced as follows:

● In practice, we enforce it using samples from the environment

31
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Adversarial Intrinsic Motivation (AIM)

32

⍴g

⍴θ

fɸ

Lf ⍴g- target (goal) distribution
⍴θ - agent state distribution
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Adversarial Intrinsic Motivation (AIM)

33

⍴g

⍴θ

Environment𝜋θ

fɸ

Lf

fɸ

st

at

RL

⍴g- target (goal) distribution
⍴θ - agent state distribution
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Analysis

34
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Analysis - Discounted Setting
Comparing the optimal policy (𝜋*) and the policy that minimizes Wasserstein 
distance to goal (𝜋♦)

Proposition 4: A lower bound on the value of any state under a policy 𝜋 can be 
expressed in terms of the time-step distance from that state to the goal: 

35



Ishan Durugkar, UT Austin

Analysis - Discounted Setting
Comparing the optimal policy (𝜋*) and the policy that minimizes Wasserstein 
distance to goal (𝜋♦)

Proposition 4: A lower bound on the value of any state under a policy 𝜋 can be 
expressed in terms of the time-step distance from that state to the goal: 

36

Theorem 5: If the transition dynamics are deterministic, the policy that 
minimizes the Wasserstein distance over the time-step metric in a 
goal-conditioned MDP is the optimal policy.
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Analysis - Undiscounted Setting
● Undiscounted setting (𝛾 = 1), with reward function

● Assume agent reaches goal state from any start state within T steps

37
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Analysis - Undiscounted Setting
● Undiscounted setting (𝛾 = 1), with reward function

● Assume agent reaches goal state from any start state within T steps

38

Proposition 8: Assuming non-zero measure for all states s under the agent's 
state visitation distribution ⍴𝜋, and considering sg as the given goal state, the 
difference in potentials
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Experiments: Grid World - AIM

39

● 10 x 10 grid world, 4 actions, 
deterministic transitions

● Bold white lines are walls that agent 
cannot cross

● Features - (x, y) coordinates of agent 
state

● Agent algorithm – soft Q-learning[1]

● Every iteration involves data 
collection, 5 potential function 
update steps, and 10 Q-function 
update steps

[1] Reinforcement learning with deep energy-based policies; 
Haarnoja et al.; ICML 2017

Start Goal
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Experiments: Grid World

40

Agent with AIM - 500 iterations Agent without AIM - 500 iterations
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Experiments: Fetch Domain
● MuJoCo gym environment

● Continuous state and action 
space

● Various tasks: Reach, Push, Slide, 
and Pick and Place

● AIM combined with HER[1] (AIM + 
HER)

● Policy trained with TD3[2]

41

[1] Hindsight experience replay; Andrychowicz et al.; NeurIPS 2017
[2] Addressing function approximation error in actor-critic methods; Fujimoto et al.; ICML 2018
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Experiments: Fetch Domain
Baselines:
● Only sparse reward (R + HER)
● Exact distance to goal (-L2 + HER)

○ Oracle reward

● Distance learned via regression 
from MC rollouts[1] (MC + R + HER)

● General exploration bonus[2] (RND 
+  R + HER)

● GAIL[3] reward from hindsight 
trajectories (GAIL + R + HER)

42

[1] Dynamical distance learning for semi-supervised and unsupervised skill discovery; Hartikainen et al.; ICLR 2020
[2] Exploration by random network distillation; Burda et al.; ICLR 2019
[3] Generative adversarial imitation learning; Ho and Ermon; NeurIPS 2016
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Experiments: Fetch Domain
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Experiments: Fetch Domain
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Experiments: Fetch Domain
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Adversarial Intrinsic Motivation – Summary
● Considering the goal-conditioned RL problem through a perspective of 

distribution mismatch minimization.

● Requires use of the Wasserstein distance.

● Introduce a novel regularization objective for estimating Wasserstein 
distance in MDPs

● Compare learning under AIM with learning with sparse reward in 
goal-conditioned RL

● Experimental validation

46
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Overview
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Transitions StatesPolicy

1. Overcoming policy sampling 
error

2. Simulator grounding as 
imitation from observations 
(IfO)

3. An algorithm for 
sim-to-real transfer

4. Time-step metric for 
estimating Wasserstein 
distance in MDPs

5. Learning a goal conditioned 
policy by minimizing W1 
distance

6. Multi-agent 
coordination 
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Multi-agent Coordination via Distribution Matching[1]

● Contribution: Distribution 
matching as a novel method to 
present a coordination signal to 
agents learning in a decentralized 
manner

48

[1] DM2: Decentralized Multi-Agent Reinforcement Learning via Distribution Matching; *Wang, C., *Durugkar, I., *Liebman, E., Stone P.; 
AAAI 2023
* - joint first authors

state st+1
rewards

r1,t,r2,t, … , rK,t

Agents

actions 
a1, a2, … , aK

Environment
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• Strategies:

– Fully centralized learning

Motivation
● Multi-agent reinforcement learning (MARL) is challenging — 

agents learning simultaneously makes the environment 
nonstationary

49

π
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• Strategies:

– Fully centralized learning

–    Centralized training, decentralized execution       
(CTDE) [1]

Motivation
● Multi-agent reinforcement learning (MARL) is challenging — 

agents learning simultaneously makes the environment 
nonstationary

50

[1] Sunehag et al., Value Decomposition Networks for Cooperative Multiagent learning, AAMAS 2018.

π1 π2 πK

Q
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• Strategies:

– Fully centralized learning

–    Centralized training, decentralized execution       
(CTDE) [1]

–    Decentralized learning + communication[2]

Motivation
● Multi-agent reinforcement learning (MARL) is challenging — 

agents learning simultaneously makes the environment 
nonstationary

51

[1] Sunehag et al., Value Decomposition Networks for Cooperative Multiagent learning, AAMAS 2018.
[2] Jaques et al., Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning, ICML 2019.

π1 π2 πK

Communication 
channel
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DM2: Decentralized MARL with Distribution Matching

● Control agent visitation 
distributions to induce 
coordination between agents 
learning independently

● The target distribution acts as 
coordination signal

52

π1 π2 πK

Expert Team Demo

D1 D1 D1
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DM2: Decentralized MARL with Distribution Matching

● Individual agents distribution 
matching to target distributions 
induced by demonstrations from 
coordinated expert 
demonstrations

● Distribution matching reward 
combined with task reward

53
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Theorem 7: Each agent maximizing its individual return over the individual 
distribution matching rewards       will converge to the joint expert policy 

Analysis

54
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Analysis
Theorem 7: Each agent maximizing its individual return over the individual 
distribution matching rewards       will converge to the joint expert policy 

55

If the expert policies are optimal with respect to the shared task, then         is a 
Nash equilibrium for rewards that are a linear combination of the task and 
distribution matching reward.
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● StarCraft II Multi-Agent Challenge[1] tasks
○ 5m vs 6m (5v6)
○ 3s vs 4z (3sv4z)

● Baselines w/environment reward alone
○ IPPO (decentralized)
○ QMIX[2] (CTDE)
○ R-MAPPO[3] (CTDE)

● Distribution Matching Baseline: DM2 w/SIL [4]

[1] Samvelyan et al., The StarCraft Multi-Agent Challenge, AAMAS 2019.
[2] Rashid et al., Qmix: Monotonic Value Function Factorisation for Deep Multi-agent Reinforcement Learning, ICML 2018.
[3] Yu et al., The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games, ArXiv 2021.
[4] Oh et al., Self-Imitation Learning, ICML 2018.

Experimental Setting



Ishan Durugkar, UT Austin

Experimental Setting
● MARL algorithm: Independent PPO (IPPO)[1]

● Demonstrations from K experts
○ State-only demonstrations sampled from saved IPPO and QMIX 

checkpoints
● Per-agent reward function:

 
57

[1] Yu et al., The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games, ArXiv 2021.
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Results – DM2

58
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Multi-agent Coordination – Summary

● Controlling the state visitation distributions of individual agents can be a 

strategy for multi-agent coordination

● Can speed up learning for tasks, and improve upon performance of target 

distributions

59
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Overview
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Transitions StatesPolicy

1. Overcoming policy sampling 
error

2. Simulator grounding as 
imitation from observations 
(IfO)

3. An algorithm for 
sim-to-real transfer

4. Time-step metric for 
estimating Wasserstein 
distance in MDPs

5. Learning a goal conditioned 
policy by minimizing W1 
distance

6. Multi-agent coordination 
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Future Work - Estimation
● PSEC-TD(0) showed that it can 

eliminate sampling error

● When evaluating a batch of data 
from a mixture of policies, initial 
experiments indicate that with 
enough data, PSEC might work as 
expected.

● More investigation is needed 

61
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Future Work - Estimation
● Estimation – long term research:

○ Combination of distributional RL and successor features

○ Impact of other distribution estimation techniques (diffusion, density estimation, and 

others)

62
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Future Work – Minimizing Distribution Mismatch

● GARAT showed that learning an action transformation function can be seen 
as a distribution mismatch problem

● What other problems can benefit similarly?

● Short term avenue:

○ Other objectives for behavioral cloning[1]

● Long term avenue:

○ Learning a dynamics model of the environment

63

[1] ABC: Adversarial Behavioral Cloning for Offline Mode-seeking Imitation Learning; Hudson, E., Durugkar, I., Warnell, G., Stone, P.; 
ArXiv 2022
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Future Work – Extending AIM
● Use of the Wasserstein distance to measure distance between 

distributions

● Considering RL problems as controlling visitation distributions

● Short term:

○ Exploration
○ Beyond goal-conditioned RL
○ Skill learning

● Long term:

○ Distribution control for general reward functions

64
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Future Work – Distribution Control in MARL
● DM2 has opened doors for the kind of impact distribution control can have 

in MARL

● Potential avenues:

○ Better coordination techniques

○ Beyond cooperative tasks

○ Bootstrapping K-expert demonstrations to  N agents (N > K)

65
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Related Work

66

●Generative adversarial imitation learning; Ho and Ermon; NeurIPS 2016

●Generative Adversarial Nets; Goodfellow et al.; NeurIPS 2014

Off-Policy Evaluation
●Breaking the curse of horizon: infinite-horizon off-policy estimation; Liu et al.; NeurIPS 2018
●DualDICE: Behavior-agnostic estimation of discounted stationary distribution corrections; Nachum 
et al.; NeurIPS 2019

Distributional RL

●A distributional perspective on reinforcement learning; Bellemare et al.; ICML 2017

Exploration
●Provably efficient maximum entropy exploration; Hazan et al.; ICML 2019
●Efficient exploration via state marginal matching; Lee et al.; ArXiv 2019

Imitation Learning
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Summary

● Variety of problems benefit from estimating or controlling visitation 
distributions

● Various actionable insights and broader implications for future work

67

How can methods for estimating and controlling an agent's visitation 
distribution be beneficially incorporated into RL algorithms?
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Thank you!

68

Ishan 
Durugkar

Scott 
Niekum

Garrett 
Warnell

Josiah 
Hanna

Elad 
Liebman

Mauricio 
Tec

Siddharth 
Desai

Haresh 
Karnan

Brahma 
Pavse

Caroline 
Wang

Peter Stone



Ishan Durugkar, UT Austin

Questions?

69

1. Overcoming policy sampling 
error

2. Simulator grounding as 
imitation from observations 
(IfO)

3. An algorithm for 
sim-to-real transfer

4. Time-step metric for 
estimating Wasserstein 
distance in MDPs

5. Learning a goal conditioned 
policy by minimizing W1 
distance

6. Multi-agent coordination 

How can methods for estimating and controlling an agent's visitation 
distribution be beneficially incorporated into RL algorithms?


